NORM Transportation in the Port of Antwerp

From Megaports to a special-purpose measurement methodology

Nucleair Technologisch Centrum – XIOS Hogeschool Limburg

Veerle Pellens, Tim Clerckx, Leen Hulshagen, Wouter Schroeyers, Chris Vandervelpen, Sonja Schreurs

Tanja Peeters, Filip Biermans

Pascal Fias

6th International Symposium on Naturally Occurring Radioactive Material
March 23, 2010; Marrakech, Morocco
Outline

- Megaports project – Port of Antwerp
 - Procedures
 - Conclusions
- NuTeC-NORM project
 - Project objectives
 - NORM Inspection Database
 - Measurement methodology
 - Case studies at companies
- Discussion & Outlook
Megaports Project

- US Government initiative
- Nuclear detection equipment in ports
- Track nuclear smuggling
- NuTeC
 - Support for Belgian Customs
 - Radiological study of container transport
NORM in the Port of Antwerp: Procedure – Primary Inspection

- 3-phase inspection
- Primary inspection
 - Entrance gate
 - 4 plastic scintillation detectors (γ) and neutron detector
 - Documents check
 - Alert: 3 (legally) accepted possibilities
 - Licensed transport
 - Error in measurement (e.g. sudden high BG)
 - **NORM beneath acceptable limit!**
 - Otherwise \rightarrow secondary inspection
NORM in the Port of Antwerp: Procedure – Primary Inspection

![Image of a truck at a port entrance]

[Logos and affiliations]

NuTeC
Nucleair Technologisch Centrum
NORM in the Port of Antwerp: Procedure – Secondary inspection

- Secondary inspection
 - Lorry is sent to Central Alert Station (CAS)
 - Extra measurements
 - 4 larger plastic scintillator detectors (γ) and neutron detector
 - Advanced Spectroscopy Portal (NaI or HPGe)
 - X-ray scanner (examine content)
 - Physical inspection
NORM in the Port of Antwerp: Procedure – Ternary inspection

- Federal Agency for Nuclear Control (FANC) becomes owner of the situation

- FANC determines further steps in agreement with radiation experts
Conclusions Megaports project

- NORM cause of many alarms
- A lot of secondary inspections are NORM-related
- BSS draft: legislation based on activity concentration
 - U-238 & Th-232 \rightarrow 1 Bq·g$^{-1}$
 - K-40 \rightarrow 10 Bq·g$^{-1}$
- Need for measurement methodology
 - Determine whether activity concentration is below the limits
 - Avoid sample analysis if possible
Outline

- Megaports project – Port of Antwerp
 - Procedures
 - Conclusions
- NuTeC-NORM project
 - Project objectives
 - NORM Inspection Database
 - Measurement methodology
 - Case studies at companies
- Discussion & Outlook
“NuTeC – NORM” project

○ New project:
 ▪ “Knowledge diffusion” regarding Natural Occurring Radioactive Materials by supporting the Flemish Non-Nuclear industry. Preparing companies for future European directives.

○ The roots of the project:
 ▪ 1st Workshop of the European ALARA Network for NORM
 ▪ Megaports project (a lot of NORM is detected!)

○ Duration of the project: 15/12/08 – 14/12/10
NuTeC-NORM project objectives:

1. Making an inventory of NORM in the Port of Antwerp: primary + secondary inspections
NuTeC-NORM project objectives:

2. Developing a tool to estimate the activity concentration of NORM in large quantity containers
NuTeC-NORM project objectives:

3. Case Studies at several NORM Companies
 - Supplying information and training for companies that work with NORM
 - Making an inventory of the presence and activity of NORM and propose appropriate action.
NORM inspection database

- Capturing primary and secondary inspections
- 75289 primary alerts in database
- $1 \text{ sigma } = \sqrt{BG}$
METHODOLOGY

- Objectives
- Sample
- Detector Position
- Detection Time
- Analysis
METHODOLOGY – Objectives

○ Output = activity concentration of radionuclide lies beneath, around or above the limits given by European Directives for NORM nuclides

○ Methodology = estimation of the activity concentration within certainty limits of NORM nuclides in sample, for a certain geometry
METHODOLOGY – Sample

- Sample = big bag, shipping container
- Geometry (bb)
 - Height
 - Nett Mass
 - Perimeter
 - Bag thickness
METHODOLOGY – Detector Position big bag

- Detectors: temp. stabilized NaI and LaBr coupled with handheld spectrometer

- Position: On top of big bag, in centre
METHODOLOGY – Detector Position container

- Detectors: temp. stabilized NaI and LaBr coupled with handheld spectrometer
- Position: in centre of container sidewall
METHODOLOGY – Detection Time

- **Big Bags:**
 - Each sample is measured ten times
 - Detection Time: 900 s

- **Shipping containers**
 - Container is measured once
 - Detection Time: 600 s
METHODOLOGY – Analysis

- Energy calibration
- Efficiency calibration
- Peak locate
- Peak area
- NID plus Interference Correction

- NOTE: assumed sequilar equilibrium for ^{238}U and for ^{232}Th
3. Industrial Case Studies

- Transport Company in the Port of Antwerp
- Dry bulk material
- Processes
 - (Re)bagging
 - Reconditioning
 - Sieving
 - Blending
Zirconium (493 alerts)

![Graph showing ZrO₂ and ZrSiO₄](image)

- ZrO₂
- ZrSiO₄

alerts

<table>
<thead>
<tr>
<th>Gamma Sigma Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

The graph shows the alert distribution for Zirconium with peaks at certain Gamma Sigma values. ZrO₂ and ZrSiO₄ are highlighted.
Zirconium Analysis Results

- Following results are based on:
 - sample of zirconium coarse grade
 - Number of measurements: 10
 - Land of origin: Australia
 - Weight: $2 \cdot 10^3$ kg
 - Packaging: big bag
 - Detector used: NaI
Zirconium Analysis Results

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Activity Concentration (Bq·g⁻¹)</th>
<th>Rel.Error (%)</th>
<th>Stand Deviation (Bq·g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>²³⁸U</td>
<td>1.51E+00</td>
<td>-22</td>
<td>4.3E-01</td>
</tr>
<tr>
<td>²³²Th</td>
<td>5.11E-01</td>
<td>4</td>
<td>1.8E-02</td>
</tr>
<tr>
<td>²²⁶Ra</td>
<td>2.09E+00</td>
<td>4</td>
<td>8.6E-02</td>
</tr>
</tbody>
</table>
K_2SO_4 (383 alerts)
K₂SO₄ Analysis Results

Following results are based on:
- sample of K₂SO₄
- Number of measurements: 10
- Weight: 1.2 \cdot 10^3 \text{ kg}
- Packaging: big bag
- Detector used: NaI
K₂SO₄ Analysis Results

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Average Activity Concentration (Bq·g⁻¹)</th>
<th>Rel.Error (%)</th>
<th>Stand Deviation (Bq·g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K⁴⁰</td>
<td>8.68E+00</td>
<td>-18</td>
<td>8.0E-02</td>
</tr>
</tbody>
</table>
Outline

- Megaports project – Port of Antwerp
 - Procedures
 - Conclusions
- NuTeC-NORM project
 - Project objectives
 - NORM Inspection Database
 - Measurement methodology
 - Case studies at companies
- Discussion & Outlook
Conclusions

- Measurement methodology
 - determination of radionuclides
 - industrial settings
- Good results
 - Th-232, Ra-226
- More research required
 - U-238, K-40
Outlook

- Analysis of LaBr spectra
 - Higher resolution
 - Less peak interference
- More samples to determine uncertainty and range of zone
- Other substances & geometries

To be continued ...
Q&A

To be continued ... NORM & Natural Radiation Management 2010, London IRPA 2010, Helsinki