The Dicalcium Phosphate production in the NORM context: study of the radiological characterization and dose assessment to workers

Núria Casacuberta, Dani Mulas, Pere Masqué and Jordi Garcia-Orellana

Institut de Ciència i Tecnologia Ambientals
Universitat Autònoma de Barcelona (Spain)

EU NORM I International Symposium, 5-8 June 2012, Tallinn, Estonia
OUTLINE

INTRODUCTION
The phosphate industry and the Dicalcium Phosphate production
The Spanish legal framework concerning NORM

AIMS OF THE STUDY

SAMPLING AND ANALYTICAL METHODS

RESULTS on:
RADIOLOGICAL CHARACTERIZATION
DOSE ASSESSMENT TO WORKERS

CONCLUSIONS & FUTURE WORK
Mineral apatite (francolite or carbonate-fluorapatite). Significant quantities of naturally occurring radionuclides; substitution of Ca\(^{2+}\) by U\(^{4+}\):

- Sedimentary phosphate rocks: 1500 Bq·kg\(^{-1}\) in average
- Igneous deposits: 70 Bq·kg\(^{-1}\).
Inorganic feed supplement

Classified as feed material by the European Commission Regulation.

Calcium and phosphorus feed supplement for domestic animals (cattle, poultry, beef, sheep). 18% of P and between 25-30% of Ca.

High calcium availability (93%).
THE Dicalcium Phosphate INDUSTRY & NORM

NORM industries (IAEA 2006):

- Extraction of REE
- Production and use of thorium and its compounds
- Production of niobium and ferro-niobium
- Mining ores other than uranium ore
- Production of oil and gas
- Titanium dioxide pigments
- Phosphate industry
- Zircon and zirconia
- Production of tin, copper, aluminium, zinc, lead, iron and steel
- Combustion of coal
- Water treatment

- Thermal phosphorus production
- Phosphate fertilizers
- Phosphoric acid production
- Dicalcium phosphate production
1- The industry holder MUST perform the studies to show whether there is an increasing dose to workers and to the public due to the industrial activity.

2- The industry holder MUST declare its industrial activity to the Authorities.

3- This RD is also extended to the wastes storage and handling.

Instructions: Nuclear Security Council (CSN)
SPANISH LEGAL FRAMEWORK IN NORM

Instructions: Nuclear Security Council (CSN)

- Effective dose to workers
 - $< 1 \text{ mSv} \cdot \text{y}^{-1}$: no further control is necessary.
 - $1 - 6 \text{ mSv} \cdot \text{y}^{-1}$: low-level control is necessary.
 - $> 6 \text{ mSv} \cdot \text{y}^{-1}$: advanced control is necessary.

- ^{222}Rn measures in working areas.
 - $600 \text{ Bq} \cdot \text{m}^{-3}$ average annual concentration.
 - $600 - 1000 \text{ Bq} \cdot \text{m}^{-3}$: low-level control is necessary.
 - $> 1000 \text{ Bq} \cdot \text{m}^{-3}$: advanced control is necessary.
INTRODUCTION

The phosphate industry and the Dicalcium Phosphate production
The Spanish legal framework concerning NORM

AIMS OF THE STUDY

SAMPLING AND ANALYTICAL METHODS

RESULTS on:

RADIOLOGICAL CHARACTERIZATION
DOSE ASSESSMENT TO WORKERS

CONCLUSIONS & FUTURE WORK
AIMS OF THE STUDY

RADIOLOGICAL CHARACTERIZATION:

- Characterize the raw material, products and by-products (226Ra, 210Pb and 210Po).
- Assess the temporal variability.
- Evaluate the radionuclide fluxes (226Ra, 210Pb and 210Po).

DOSE ASSESSMENT TO WORKERS:

- Study the potential annual dose to workers (1 mSv·y$^{-1}$?).
- Quantify the doses during the cleaning and maintenance of particular areas in the production process.
- Study the 222Rn concentrations (600 Bq·m$^{-3}$?).
DCP plant description

- Phosphate rock storage
- DCP drying nº 3
- Phosphate rock digestors/reactors
- Decanters
- DCP Precipitation tanks
- DCP Precipitation tanks
- DCP drying nº 1-2
- Laboratory and offices
- DCP Truck loading
- DCP packaging
- DCP storage area
- DCP Truck loading
- DCP Precipitation tanks
RADIONUCLIDE CHARACTERIZATION:

1. Inputs (phosphate rock) and outputs (waters, sludges and DCP).
2. Temporal variability: 1 sample per week during 2 months.
DOSE ASSESSMENT

Gamma dose rate:
- Area dosimetry (Eberline, Inspector 1000)
- Maintenance and cleaning of the digestors (Personal dosimeter).

Inhalation dose rate:
- Rn measurements (Rad7)
- Dust assessment (RADECO).
ANALYTICAL METHODS

Alpha spectrometry (U/Th determination)

Gamma spectrometry

Alpha spectrometry (210Po deposition)
OUTLINE

INTRODUCTION
The phosphate industry and the Dicalcium Phosphate production
The Spanish legal framework concerning NORM

AIMS OF THE STUDY

SAMPLING AND ANALYTICAL METHODS

RESULTS on:
RADIOLOGICAL CHARACTERIZATION
DOSE ASSESSMENT TO WORKERS

CONCLUSIONS AND FUTURE WORK
226Ra, 210Pb & 210Po SPECIFIC CONCENTRATIONS

PHOSPHATE ROCK

Ra-226: 1809±59 Bq·kg⁻¹
Pb-210: 1731±143 Bq·kg⁻¹
Po-210: 1620±126 Bq·kg⁻¹

226Ra: 56 – 84 Bq·kg⁻¹
210Pb: 1343 - 2882 Bq·kg⁻¹
210Po: 79 - 507 Bq·kg⁻¹

DICALCIUM PHOSPHATE

226Ra: 1809±59 Bq·kg⁻¹
210Pb: 1731±143 Bq·kg⁻¹
210Po: 1620±126 Bq·kg⁻¹
226Ra, 210Pb & 210Po SPECIFIC CONCENTRATIONS

INDUSTRIAL SLUDGES

- 226Ra: 3191 - 4156 Bq·kg⁻¹
- 210Pb: 606 - 1485 Bq·kg⁻¹
- 210Po: 4407 - 8111 Bq·kg⁻¹

INDUSTRIAL WATERS

- 226Ra: 6 – 25 Bq·L⁻¹
100% kBq·h⁻¹
²³⁸U and daughters
OUTPUT FLUXES OF ^{226}Ra
OUTPUT FLUXES OF ^{210}Po
AVERAGE OUTPUT FLUXES (weeks 1, 3, 5 & 7)

Output to Input Ratio (OIR)

Ra-226
- 0.55 ± 0.04

Pb-210
- 0.91 ± 0.21

Po-210
- 0.98 ± 0.25
RADIOLOGICAL CHARACTERIZATION: things to take into account....

Temporal variability in:

- Industrial production.
- Radionuclide concentration in products and sub-products.
- General fluxes of radionuclides.

Necessary to:

- Know the radionuclide behaviour within the industrial process.
- Estimate the amount of radioactivity in inputs and outputs.
- See the potential accumulation of radionuclides in the plant.
Identification of two areas with HIGH GAMMA EXPOSURE:

- Reactors
- Pipes

CLEANING AND MAINTENANCE?
Gamma dose rates: CLEANING & MAINTENANCE
Gamma dose rates: CLEANING & MAINTENANCE

1st PERSONAL DOSIMETER: < 0,1 mSv
2nd PERSONAL DOSIMETER: < 0,1 mSv
3rd PERSONAL DOSIMETER: < 0,1 mSv
4th PERSONAL DOSIMETER: < 0,1 mSv
5th PERSONAL DOSIMETER: < 0,1 mSv

CLEANING AND MAINTENANCE OF REACTORS/DIGESTORS DOES NOT SUPPOSE A RADIOLOGICAL RISK TO THESE WORKERS:
- Short time of exposure.
- High detection limit (0,1 mSv).
Inhalation dose rate: ^{222}Rn measurements

- **0 - 100 Bq·m$^{-3}$**
- **100 - 200 Bq·m$^{-3}$**
- **200 – 400 Bq·m$^{-3}$**

- < 600 Bq·m$^{-3}$
Inhalation dose rate: DUST CHARACTERIZATION
Inhalation dose rate: DUST CHARACTERIZATION

²¹⁰Po in mBq·m⁻³

Phosphate rock arrival and storage to the plant

DCP package and truck loading
$^{210}\text{Po} \text{ Inhalation dose rate (preliminary results)}$

$$E \ (mSv \cdot y^{-1}) = C_i \cdot V \cdot t \cdot DCC_{i(\text{inh})}$$

$C_i =$ Concentration of ^{210}Po in air (Bq·m$^{-3}$)
$V =$ Breathing rate (1,2 m3·h$^{-1}$)
$t =$ Residence time of employees at the workplace (2000/year)
$DCC_{i(\text{inh})} =$ Dose conversion factor for ^{210}Po (if inhaled) (Sv·Bq$^{-1}$)

<table>
<thead>
<tr>
<th>Filter number</th>
<th>Description</th>
<th>mSv·y$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-1</td>
<td>Close to digestors</td>
<td>0,0040 ± 0,0002</td>
</tr>
<tr>
<td>F-2</td>
<td>Digestors cleaning (floor 0)</td>
<td>0,0032 ± 0,0002</td>
</tr>
<tr>
<td>F-3</td>
<td>PR arrival and storage</td>
<td>0,32 ± 0,01</td>
</tr>
<tr>
<td>F-4</td>
<td>DCP packaging</td>
<td>0,170 ± 0,007</td>
</tr>
<tr>
<td>F-5</td>
<td>Offices</td>
<td>0,019 ± 0,001</td>
</tr>
<tr>
<td>F-6</td>
<td>On production line</td>
<td>0,018 ± 0,001</td>
</tr>
<tr>
<td>F-7</td>
<td>On sludges line</td>
<td>0,0050 ± 0,0003</td>
</tr>
<tr>
<td>F-8</td>
<td>DCP truck loading</td>
<td>0,42 ± 0,01</td>
</tr>
</tbody>
</table>
DOSE ASSESSMENT TO WORKERS: things to take into account....

Residence time at each area within the plant.

Temporal variability in:

- Industrial production.
- Radionuclide concentration in products and sub-products.
- General fluxes of radionuclides.

Security measures: reduce the dose considerably.

Formation to workers.

ANUAL DOSE: < 1 mSv·y⁻¹
INTRODUCTION
The phosphate industry and the Dicalcium Phosphate production
The Spanish legal framework concerning NORM

AIMS OF THE STUDY

SAMPLING AND ANALYTICAL METHODS

RESULTS on:
RADIOLOGICAL CHARACTERIZATION
DOSE ASSESSMENT TO WORKERS

CONCLUSIONS & FUTURE WORK
CONCLUSIONS

RADIOLOGICAL CHARACTERIZATION:
- Products and by-products: $< 1000 \text{ Bq} \cdot \text{kg}^{-1}$ ^{226}Ra, ^{210}Pb, ^{210}Po.
- Temporal variability of radionuclide concentration (depending upon production volume).
- Variability within fluxes of radionuclides but good Output to Input Ratio when averaging the 8 sampling weeks.
- About 40% of ^{226}Ra is enhanced within the production process.

DOSE ASSESSMENT TO WORKERS:
- In general $< 0.5 \text{ uSv} \cdot \text{h}^{-1}$ except specific areas (reactors and pipes: up to 50 uSv·h⁻¹).
- Clearance and maintenance of reactors/digestors does not suppose a radiological risk due to low time of exposure.
- Low ^{222}Rn concentrations ($< 600 \text{ Bq} \cdot \text{m}^{-3}$).
- Potential high dose of inhalation (^{210}Po) in two specific areas.
- With proper formation to workers and simple security measures $< 1\text{ mSv} \cdot \text{y}^{-1}$.
FUTURE WORK

FINAL DOSE ASSESSMENT, considering:
- 226Ra, 210Pb and 210Po in dust.
- Residence time of each employee at each area.
- Cleaning and maintenance of decanters and tubing.

WASTES MANAGEMENT:

1. Pipes and tubing
2. Press filters
Thank you!

Núria Casacuberta, Dani Mulas, Pere Masqué and Jordi Garcia-Orellana

Nuria.Casacuberta@uab.es

Institut de Ciència i Tecnologia Ambientals
Universitat Autònoma de Barcelona (Spain)

EU NORM I International Symposium, 5-8 June 2012, Tallinn, Estonia